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SUMMARY 

We describe some experiences using iterative solution methods of GMRES type to solve the discretized 
Navier-Stokes equations. The discretization combined with a pressure correction scheme leads to  two 
different systems of equations: the momentum equations and the pressure equation. It appears that a fast 
solution method for the pressure equation is obtained by applying the recently proposed GMRESR method, 
or GMRES combined with a MILU preconditioner. The diagonally scaled momentum equations are solved 
by GMRES(m), a restarted version of GMRES. 
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1. INTRODUCTION 

In Reference 17 a numerical discretization of the incompressible Navier-Stokes equations in 
general curvilinear co-ordinates is treated. The space discretization consists of a finite volume 
technique on a structured grid. The motivation for these choices is that we want to solve large 
two- and three-dimensional problems. In these problems it is important to obtain fast iterative 
methods to solve the discretized equations. This is easier using a finite volume technique instead 
of a finite element technique. Finally, the structured grid enables us to develop a good implemen- 
tation of the methods on vector computers. 

In this paper we present some experiences with iterative solution methods applied to the 
equations given in Reference 17. We opt for iterative methods because we want to solve large 
two-dimensional problems and in the near future large three-dimensional problems, Fast iterative 
methods to solve a system of linear equations are: multigrid methods and Krylov subspace 
methods. In References 11 and 14 the discretized incompressible Navier-Stokes equations are 
solved with a multigrid method. We consider Krylov subspace methods. Since the matrices are 
non-symmetric, we are not able to use the conjugate gradient or conjugate residual method. So 
we use the GMRES method, which is a robust method to solve non-symmetric problems and has 
an optimal rate of convergence. A comparison of GMRES-type methods with CGS3 and 
Bi-CGSTAB is a point of current research. 

Other iterative methods to solve the incompressible Navier-Stokes equations are: 

1. the SIMPLE method (semi-implicit method for pressure-linked equations),’ ’. l 3  

2. the distributive Gauss-Seidel smoothing method,’. 
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3. the symmetric coupled Gauss-Seidel method," 
4. the distributive JLU smoothing method.27 

For more details on these methods used in combination with the multigrid method, we also refer 
to Wesseling.26 

The solution of the pressure equation is discussed in Section 3. It appears that GMRES should 
be combined with a preconditioner to obtain a fast iterative method. In Section 4 we use the 
GMRES method to solve the momentum equations, We show that a correct scaling of the 
equations is important. Furthermore, we describe a termination criterion, which is combined with 
the GMRES method. Finally, we end this paper with conclusions in Section 5. 

2. STATEMENT OF THE PROBLEM 

In this section we specify the incompressible Navier-Stokes equations and outline the discretiz- 
ation of these equations in time and space. Subsequently, we describe the geometry and initial and 
boundary conditions for a test problem, which is used in the remainder of this paper. 

We consider the flow of an incompressible fluid in a two-dimensional configuration. In 
Reference 17 the Navier-Stokes equations, which can be used to describe this flow, are for- 
mulated in general co-ordinates. For the sake of simplicity we describe these equations in 
Cartesian co-ordinates 

where 
4 aui 2 a u j  0 3axi  3ax j  ' zii=Re-' , i , j ~ { l . 2 } ,  ifj, 

together with the incompressibility condition 

and appropriate initial and boundary conditions. In these equations ui is the component of the 
velocity of the fluid in xi-direction, p is the pressure and Re is a parameter called the Reynolds 
number. 

In the time discretization, finite differences are used. In this test problem we use an equidistant 
time discretization. We note that the discretization described in Reference 17 is not necessarily 
equidistant. For a given positive integer N we define k =  TIN.  In  the following v" denotes the 
numerical approximation of v(nk) .  Using the pressure correction method' we obtain the follow- 
ing equations: 

a Z P n + l  a Z P n + 1  32," 
+2=- 

ax: ax2 ax: (4) 

and, finally, 
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Figure 1. The physical domain of the test problem 

The non-linear terms i2f" $7' appearing in ( 3 )  are linearized (Newton linearization) as follows: 

u i  A n t 1  u j  A n t i ,  = u i  A n t i  uJ+u~ l ; J " -u fu7  with i , j ~ { 1 , 2 } .  

For the discretization in space the physical domain is mapped onto a rectangle (computational 
domain). Combining this co-ordinate transformation with finite volumes on a staggered grid in 
the computational domain, we obtain a space discretization of the equations (3) ,  (4) and (5). The 
operator div * grad in the pressure equation (4) is discretized by divh - gradh, where the same 
operators divh and grad,, are used in the discretization of the momentum equations ( 3 ) .  For more 
details we refer to Reference 17. 

The resulting equations can be divided into two linear systems. The first system, the mo- 
mentum cquations, is a discretized version of (3) whereas the second system, the pressure 
equation, is a discretized version of (4). The space discretization is such that it is possible to 
implement algorithms, for building the matrices and solving the systems of equations, which are 
suitable for vector and parallel computers. 

In the remainder of this paper we consider one test problem, which describes the flow through 
a curved channel. Our experiments with this problem give valuable insight into the behaviour of 
GMRES solving the pressure and the momentum equations. The physical domain of the problem 
is displayed in Figure 1. Initially, the velocities are equal to zero. The boundary conditions are: 
a parabolic velocity profile, with the maximal velocity equal to one, on the inflow boundary 
(Boundary l), a no-slip condition on Boundary 2 and 4 and the normal stress and tangential 
velocity given on the outflow boundary (Boundary 3). We chose Re = 500, T= 0.3 and N = 2. For 
the space discretization the two squares (see Figure 1) are divided into 16 x 16 finite volumes, 
whereas the curve is divided into 16 x 32 finite volumes. The total number of finite volumes is 
16 x 64= 1024. 

3. THE PRESSURE EQUATION 

In this section we start with a specification of the discretized pressure equation. After that we 
describe the GMRES method, which is used to solve this equation. We obtain valuable insights 
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from the convergence properties of full GMRES. However, full GMRES is expensive with respect 
to computing time and memory requirements. A fast iterative method is obtained by a combina- 
tion of GMRES with a polynomial or an ILU preconditioner. We end the section with a remark 
on the memory requirements of this iterative solution method. 

The physical domain of our test problem is the curved channel of Figure 1.  The computational 
domain, which is used in the discretization of the pressure equation (4) is a rectangle, of which the 
edges are parallel to the co-ordinate axes. The orientation of the computational domain is such 
that n ,  < n z ,  where n, is the number of grid points in the x,-direction. 

We use a lexicographical ordering of the grid points, so the difference between the indices of 
neighbouring grid points equals 1 in the x,-direction and nl in the x2-direction. The structure of 
the matrix  PER(^^"^)^(^^^^) used in the discretized pressure equations is given in Figure 2. The 
curvilinear grid combined with a co-ordinate transformation results in a non-symmetric pressure 
matrix P .  With considerable effort, it is possible to make the matrix P symmetric in the interior 
region; however, not in the vicinity of the boundary. This is a disadvantage of the finite volume 
method, since using a finite element technique one obtains a symmetric pressure matrix P .  

In this paper we solve the pressure equation Px = b using the GMRES(m) method (see 
Reference 15). In the GMRES method the vector zk is chosen such that 

zk=arg min / I  b-P(xo+z) / I2 ,  
z E X k ( P . r o )  

where ro = b - Pxo and the Krylov subspace K k ( P ;  r o )  is defined by 

Kk(P;r0)=span { r O , P r o , .  . . , P k - l r o } .  

In the following experiments we always take xo =(O, . . . , 0)'. After m iteration steps the method 
restarts using x,=.x0+z, as start vector, For an implementation of this method we refer to 
References 15 and 22. 

GM R ES(50) 

Using the insights given in Reference 7, we choose the integer r n ~ [ 5 ,  501 as large as possible 
with respect to memory requirements. In this example there are 16 x 64= 1024 grid points, and it 

i+nl i 

i-nl 

Figure 2. The pressure matrix P 
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turns out to bc possible to take rn equal to 50. After 1220 iterations and 17 s CPU time measured 
on one processor of a Convex C240, we obtain 11 rlzz0 / I z /  1 1  ro 1 1 2  < lo-". This is a bad result, which 
motivates us to analyse the convergence behaviour of the GMRES method in this application. To 
facilitate comparison we specify the amount of work and memory in Table I. 

Full GMRES 

In the following experiment we solve the pressure equation with full GMRES, so, the GMRES 
method is not restarted. It appears that 1 1  rlB4 11 z / l l  ro 11 < lo-". This is a better result with respect 
to computing time but now the amount of required memory is (too) large (see Table 1). 

Although full GMRES uses too much memory in this application, the results of this experiment 
give valuable information. From the local convergence behaviour (see Figures 3 and 4) it appears 
that in the first 100 iterations, the residual remains nearly the same. Taking into account the 
analysis of the convergence behaviour of GMRES given in References 7 and 23, we conclude that 
it takes more than 100 iteration before the Ritz values approximate the eigenvalues, which results 

Table I. The amount of work, memory and CPU time 

Method Matvec Vector Inner Memory CPU time (s) Precondition 
update product vectors (Convex) matvec 

GMRES( 50) 1220 35000 35000 50 17 0 
Full GMRES 184 17000 17000 184 7.2 0 
GMRESR 198 1386 1224 46 1.2 0 
TLU 53 1405 1405 53 1.2 53 
MILU ( c ~ = 0 9 5 )  31 48 1 48 1 31 0.6 31 

~~ 

0 -7.0 ~ " " " " ; " " ; " " ; " " ; " " ; " " ; " " ; ' ~ " " " '  

.o 37.0 74.0 111.0 148.0 185.0 

1 -  

Figure 3. Full GMRES 
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Figure 4. Full GMRES 

in a super linear convergence behaviour of GMRES in a later phase. This explains that restarting 
GMRES is a bad idea in this application, because if we choose rn less than 100, GMRES is only 
linearly convergent, and the reduction factor is nearly 1. This agrees with the results obtained 
with GMRES(50). 

Polynomial preconditioning 

From these experiments it follows that a preconditioner is necessary to get an acceptable 
computing time and a reasonable amount of memory required. Since a polynomial precondi- 
tioner has good vectorization properties, we start with such a preconditioner. A combination of 
GMRES with a polynomial preconditioner is presented in References 10 and 16. 

Using GMRES combined with a polynomial preconditioner, we cannot expect to need fewer 
matrix vector products than using full GMRES, because GMRES has the minimal residual 
property (6). So, the main purpose of a polynomial preconditioner is to lower the number of 
vector updates and inner products, and the amount of required memory. 

In this paragraph we describe a polynomial preconditioner, where the polynomial is adapted in 
every iteration. We get the idea for this preconditioner from the EN method as given in Reference 
4 and analysed in Reference 25. In the EN method one approximates P ~ in every iterate by the 
polynomial (I - P) .  We propose to approximate P ~ ' by a polynomial of higher degree, which is 
obtained by a call of full GMRES. The resulting method, which we denote by GMRESR, is given 
as follows (cf. Reference 24): 

1. u,,=H,r,/II PH,r,~),,c,=Pu,, k = O ,  
T T x1 =x,+uoc,ro and r l  =ro-cocoro; 
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In this algorithm H k r k  denotes the solution of the system Pyk = r k  with mpost itertions of full 
GMRES. 

Application of GMRESR with mpost = 10 gives 11 r ,  I /  2 / 1 1  ro II d Since in every iteration 
of GMRESR we use 11  matrix vector products, we obtain the solution with 198 matrix vector 
products. Comparing this with GMRES(5O) and full GMRES, we conclude that GMRESR has 
a favourable convergence behaviour in this application. 

Tt follows from Table I that the number of vector updates and inner products shows a consider- 
able reduction, with respect to full GMRES. These observations explain the large reduction of the 
computing time. 

With respect to memory requirements, we note that, using m iterations of GMRESR, we need 
2m + mpost vectors in memory. In this experiment m = 18 and mpost = 10; so, we need 46 vectors 
in memory, which is comparable with GMRES(50). 

Note that both aims of polynomial preconditioning are achieved: reduction of the vector 
updates and inner products and a reduction of the memory required. The extra cost of this 
approach, 14 extra matrix vector multiplications, is negligible. 

Application of GMRESR with mpost = 15 or 20 gives comparable results. So, the efficiency of 
the algorithm is not very sensitive to variation of mpost. 

I L  lJ preconditioning 

Another successful preconditioning technique is to construct an incomplete LD - ’ U 
decomposition of P and to solve the system U ’ DL ~ Px = U h instead of Px = h 
(see References 9 and 20). To implement this preconditioning we use the following rules to 
obtain L, D and U : 2 0  

D L  

(a) diag(L)=diag(U)=D; 
(b) the off-diagonal parts of L and U are equal to the corresponding parts of P ;  
(c) diag(LD-’ U)=diag(P). 

Note that this preconditioning needs only one extra vector in memory to store the diagonal 
matrix D. 

Combination of the ILU preconditioner with full GMRES gives 11 r53  1 1 2 /  1 1  ro 1 1 2  d lop6.  The 
resulting computing time and memory requirements are comparable with GMRESR (see 
Table I). Note that in contrast to GMRESR we have not yet implemented a vectorizable version 
of the TLU preconditioning. Using such a version the computing time should be less than the 
computing time using GMRESR. 

M I L  U preconditioning 

Finally, we use the MTLU preconditioning specified in Reference 5. In this preconditioning the 
construction of D is such that the rowsum of LD-’ U equals the rowsum of P. In the following 
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Table 11. Number of iterations for different z 

r 0 0.9 0.925 0.95 0.98 1 

Iterations 53 33 32  31 40 48 

experiments, we use an average of the ILU and the MILU preconditioner.',22 The ILU 
preconditioner corresponds with x = 0, whereas the MILU preconditioner corresponds with IX = 1. 

The number of iterations of MILU combined with full GMRES such that 1 1  rr ( I 2 / / /  ro / 1 2  Q lop6 
is given in Table I1 for different choices of 3. From Table I it appears that this method, with 
IX = 0-95, is optimal with respect to the amount of work, required memory and computing time. It 
appears from our experiments that r=0.95 is a good choice for many different problems. Note 
that the matrix P only depends on the discretization of the physical domain. In this application 
combination of MILU and polynomial preconditioning gives only a small reduction of the 
computing time and memory requirements. 

Mem ury requirements 

From these experiments, it appears that GMKES combined with MILU preconditioning needs 
31 vectors in memory. This is a large amount of memory with respect to the memory require- 
ments of for instance CGS.I8 However, the momentum equations are built every timestep so the 
memory required to store and solve the momentum equations can be used to solve the pressure 
equations. In Section 4 we show that the momentum matrix consists of 13 vectors, which are 
twice as long as the vectors used in the pressure equations. So, we do not need much extra 
memory to solve the pressure equations using full GMRES combined with a MILU 
preconditioner. 

4. THE MOMENTUM EQUATIONS 

In this section we specify the momentum equations. An application of full GMRES shows that 
the momentum matrix is 'nearly' singular. It appears that this is a consequence of a wrong scaling 
of the equations. We show that a diagonally scaled version of the momentum matrix has much 
better properties. Thereafter we discuss some termination criteria. Finally, the section is con- 
cluded by some experiments with the GMRES(m) method. 

The discretized momentum equations (see equation (3)) are denoted by Mx = h, where 
M E  R(2n1n2) X(2n1n2) and x, b E  I W z n l n 2 .  The structure of the matrix M is given in Figure 5. From 
equation (3) it follows that the matrix M depends on the space and the time discretization, the 
Reynolds number and the velocity of the fluid in the preceding timestep. This implies that, in 
general, M is different in every timestep, therefore, in the following the momentum matrix in the 
nth timestep is denoted by M,.  From our experiments it appears that M x = h can be solved with 
a small number of GMRES iterations. In order to give an explanation, we note that the initial 
condition and the choice of Re imply that MI is approximately equal to a scalar times, the 
identity matrix. It is known that GMRES converges fast for such a linear system. Since it appears 
that the convergence behaviour of GMRES applied to M , x  = b is more or less the same for every 
n 2 2 ,  we consider the system M 2 x = b  in the remainder of this section. 
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Figure 5. The momentum matrix M ,  where n u = n ,  .ti2 

Full GMRES 

As in Section 3 we apply full GMRES to the momentum equations to obtain insights into its 
convergence properties. To solve M , x = h ,  we start GMRES with xo=O and stop when 
11 ri ] I 2  < lo-*. In this experiment GMRES satisfies the stopping criterion after 135 iterations. The 
converge history is given in Figure 6. Note that the convergence stagnates from iteration 50 until 
iteration 70. To obtain more insight into this stagnation phase we calculate the Ritz values, which 
are plotted in the Figures 7-9. From these figures, and the analysis given in Reference 23 we 
conclude the following: It appears from Figure 9 that there is a ‘small’ eigenvalue, which means 
that its modulus is small with respect to the moduli of the other eigenvalues. Initially, the 
component in the corresponding eigenvector is small, so, there is no ‘small’ Ritz value in 
Figure 7 and the convergence is fast (see Figure 6). However, in the stagnation phase the process 
discovers that ther is a ‘small’ eigenvalue (Figure 8). After iteration 70, the ‘small’ Ritz value is 
converged (Figure 9) and GMRES converges as if the ‘small’ eigenvalue is absent, which 
corresponds with the results given in Reference 23. 

Where does this ‘small’ eigenvalue come from? In the discretization the Dirichlet boundary 
conditions are included as equations in the system M 2 x  = h. However, these extra equations are 
not scaled with respect to the other ones. As a result of this, the main diagonal elements in these 
equations, which are equal to one, differ by a factor 10’-104 with the other non-zero main 
diagonal elements. To get rid of these ‘small’ eigenvalues we propose the following approaches: 

1. do not include the Dirichlet boundary conditions as extra equations, 
2. take the start vector xo such that it already satisfies the extra equations, 
3. scale the momentum equations with the inverse of the non-zero main diagonal elements. 

In the following paragraphs we analyse these approaches in more detail. 
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Figure 6. Full GMRES 
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Approach I 

implement this in our discretization, we have not experimented with this approach. 
The convergence should be better without the extra equations. However, since it is not easy to 
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Figure 8. Ritz values after 50 iterations 
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Figure 9. Ritz values after 70 iterations 

Approach 2 

This approach is the same as approach 1 in the sense that the extra equations, and thus the 
'small' eigenvalues, no longer influence the convergence behaviour of GMRES. From an experi- 
ment we obtain /I rt  12 / / z  6 So this approach saves 25 iterations. The local convergence 
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Figure 10. Full GMRES without the influence of the Dirichlet boundary conditions 
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Figure 11. Ritz values after 112 iterations without the influence of the Dirichlet boundary conditions 

behaviour is given in Figure 10. Note that there is no stagnation phase (compare Figure 6). 
Calculation of the Ritz values, which are plotted in Figure 11, shows that 'small' Ritz values are 
absent. 
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Figure 12. Ritz values after 107 iterations of GMRES combined with a diagonal scaling 

Approach 3 

that the convergence of GMRES depends on the convex hull of the eigenvalues. 
After the scaling of the equations, we expect that all eigenvalues are clustered around one, which 
implies that the extra equations do not influence the convergence of GMRES. Since jl ro 1 1 2  
depends on the scaling of the equations, GMRES is stopped after the ratio of the norm of the ith 
residual and the initial residual is the same as for the original process. Using this stopping 
criterion and starting with xo=O, GMRES stops after 107 iterations. The local convergence 
behaviour is more or less the same as that given in Figure 10. In Figure 12 we plot the Ritz values 
of GMRES combined with diagonal scaling. Note that the eigenvalue equal to one, which comes 
from the Dirichlet boundary condition, is inside the convex hull of the eigenvalues, as expected; 
so, it does not influence the convergence of GMRES. 

It is known', 

A terminution criterion 

A good termination criterion is important for iterative solution methods. In this paragraph we 
discuss the following criteria: 

1. I1 rk II Geps 

2. IIrk112/11~0112~ePs 
The main disadvantage of this criterion is that it is not scaling invariant. 

This criterion is scaling-invariant, however, the number of iterates is independent of the 
initial estimate xo. This is a drawback because we expect that after some time the solution of 
the foregoing timestep is a good starting solution. 

This is a good stopping criterion. 
3. l l ~ k l l 2 / l l ~ l l 2 ~ ~ P ~  
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4. K2(A) I/ rk I l ~ / l l  b 112 Geps, where K 2 ( A )  is the condition number of A.  
This is the best termination criterion. From the inequality 

it follows that 11 x - x k  1 1 2 / 1 1  x 1 1 2  deps. However, in general K 2 ( A )  is not known. To obtain an 
estimate for K ,  ( A ) ,  we propose to calculate the singular values of &6k!(k+1)X ’. Rk is defined 
in Reference 15, p. 86 I .  An underestimate of K 2 ( A )  is given by the ratio where cik) is 
the largest and uf) is the smallest singular value of R, .  

In Figure 13 we plot the estimate from full GMRES applied to the original momentum 
equations. Note that initially the estimate is small but after 50 iterations the estimate increases to 
lo4. This corresponds with the results given in Figure 6.  

In Figure 14 we give the estimate from full GMRES combined with a diagonal scaling of the 
momentum equations. This estimate remains small. Furthermore, it appears that after a small 
number of iterations the difference between the estimate and its final value is rather small. This 
motivates us to use the following termination strategy in the diagonal scaled momentum 
equations: 

if k = 10 calculate the estimate K2(A)=a‘:o’/a\~o’, 

if k < l O  then 

stop when /I rk  II ~ 1 1  b II Geps 
else 

stop when i 2  ( A )  1 1  r k  /I 2 /  I /  b /I 2 eps 
endif 

f 
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Figure 13. The estimate of the condition of M obtained from full GMRES 
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Figure 14. The estimate of the condition of M obtained from full GMRES combined with a diagonal scaling 

The time to estimate k2(A) is less than 0.006 s CPU time on the CONVEX. Comparing this with 
Table 111 we conclude that this overhead is negligible. 

GMRES(m) with diagonal scaling 

From the local convergence behaviour of full GMRES (Figure lo), we expect that GMRES(m) 
is a good iterative method. In Table I11 we give some experiments with eps = and different 
choices of m. In these experiments 11 ro /I = 0-92 and / I  b 11 = 2. 

If k=min(lO, m), we calculate the estimate k2(A). This implies that k2(A) is less for m = 5  
( k 2 ( A ) = 3 . 4 )  and m = 3  (K2(A)=2.9) than for m 2  10 (k2(A)=4-2).  Since this estimate is used in 
the stopping criterion, we expect larger norms of the final residual if m is less than 10 (see 
Table 111). It follows from Table I11 that if m decreases the amount of vector updates and inner 
products decreases, whereas the amount of matvec’s increases. We observe from m= 10 and m = 3 
that the decrease in computing time with respect to the vector updates and inner products is equal 
to the increase in computing time with respect to the matrix vector multiplications. Finally, we 

Table 111. The amount of work, memory and CPU time 

m Iterations Matvec Vector Inner Memory II r II 2 CPU time (s) 
update product vectors CONVEX 

53 53 53 1431 1431 53 0-4 x 10-5 1.24 
20 55 51 520 520 20 0-37 x 10- 5 0.72 
10 55 60 263 263 10 0-44 10- 5 0.67 

5 57 68 1 4 4  144 5 0.51 10-5 0.62 
3 62 82 100 100 3 0.63 x 10-5 0.69 
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note that for the optimal choice (m = 5 )  the required number of vectors in memory is rather small. 
For m less than 6, the required memory is comparable with the required memory of CGS.” 

5. CONCLUSIONS 

In this paper we have described properties of GMRES-type iterative methods to solve a discretiz- 
ation of the Navier-Stokes equations. Our experiments consist of two parts: in the first part we 
solve the pressure equation, and in the second part we solve the momentum equations. 

Solving the pressure equation, we note that only full GMRES gives a good iterative solution 
method. Restarting destroys the superlinear convergence behaviour of GMRESZ3 From these 
results it  follows that a preconditioning is necessary to obtain reasonable computing time and 
memory requirements. It appears that polynomial preconditioning and (M)ILU preconditioning 
give good results. The required memory used in full GMRES combined with a MILU precondi- 
tioner is available because the memory required to store the momentum matrix can be used. Note 
that the momentum matrix is built anew every timestep. 

Full GMRES applied to the momentum equations reveals that the scaling of the equations as 
originally given is unfavourable. Diagonal scaling of the matrix gives much better results. 
A termination criterion is proposed such that the norm of the relative error in the solution vector 
is less than a prescribed accuracy. Using diagonal scaling and this termination criterion, we 
present results of some experiments with GMRES(m). It appears that a small m is sufficient, which 
implies that only a small amount of extra memory is required. This amount is comparable with 
the amount of memory used in the CGS method. 
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